Novel Workstation Module and Method for Automatic Blanking of Surgical Forceps

Author:

Du Xianzhen1,Li Jiapeng1,Wang Haochen2,Li Zhenyu3,Li Yusheng1,Li Zhiyuan1

Affiliation:

1. School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China

2. Shandong Gongzhi Technology Co., Ltd., Zibo 255000, China

3. School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

Abstract

During the manufacturing of surgical forceps, the flashes of the blanks need to be removed. Manual production has problems such as high labor intensity, low efficiency, and high-risk factors. To solve this problem and realize fully automatic resection, a novel modular workstation was designed and a corresponding process method was proposed. The workstation adopts robots, non-standard automation equipment, and image recognition technology instead of manual loading and blanking, but the blank storage still needs to be performed manually. The critical components were selected according to the workstation design scheme and process method, and the control system design was completed. The reliability of the separation unit was studied through a test platform, and the failure problem caused by uneven force was solved using a blank locking device, which showed that the separation success rate was stabilized at 100%. The detection speed of the image recognition system can reach 100 ms/piece, and the product qualification rate can reach 95.7%. The advantages of the workstation in terms of output and productivity were further analyzed by comparing it to manual production, where the average daily output increased by 12.5% (4500 pieces). In addition, the results of long-term test experiments and power consumption comparison tests showed that the workstations are highly stable and consume little additional power.

Funder

National Natural Science Foundation of China

Research funding for the education project from China Educational Ministry

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3