Experimental Investigation Using Acoustic Emission Technique for Quasi-Static Cracks in Steel Pipes Assessment

Author:

Shehadeh MohamedORCID,Osman Ahmed,Elbatran Aly Abdelbaky,Steel John,Reuben Robert

Abstract

Acoustic emission (AE) is a phenomenon where transient waves of stress are generated during deformed material, which is applied to detect and monitor the cracks and cracks propagation. The majority of related literature studied simulated wave sources, which were utilized for a single point of a pipe and have been strictly controlled by temporal characteristics. Therefore, the realistic wave sources which do not have known temporal characteristics are studied in the present work. The realistic source is quasi-static crack propagation under three-point bending. The distortions of AE signals are experimentally evaluated by testing the AE signals of crack propagation using simulated sources. A variety of stress intensities are applied on a steel pipe to determine the effect of stress type and intensity on the characteristics of the source using time and frequency domains. Machines are mounted on the steel pipe to locate and reconstitute the features of time and frequency domain of the AE sources. It is concluded that the AE energy was sensitive to the crack size which was concerning to the transition of plane-stress to plane-strain. The potential of AE technique for identifying the nature, intensity and location of crack propagation is demonstrated.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3