A Process Monitoring Method Based on Dynamic Autoregressive Latent Variable Model and Its Application in the Sintering Process of Ternary Cathode Materials

Author:

Chen NingORCID,Hu Fuhai,Chen JiayaoORCID,Chen ZhiwenORCID,Gui Weihua,Li Xu

Abstract

Due to the ubiquitous dynamics of industrial processes, the variable time lag raises great challenge to the high-precision industrial process monitoring. To this end, a process monitoring method based on the dynamic autoregressive latent variable model is proposed in this paper. First, from the perspective of process data, a dynamic autoregressive latent variable model (DALM) with process variables as input and quality variables as output is constructed to adapt to the variable time lag characteristic. In addition, a fusion Bayesian filtering, smoothing and expectation maximization algorithm is used to identify model parameters. Then, the process monitoring method based on DALM is constructed, in which the process data are filtered online to obtain the latent space distribution of the current state, and T2 statistics are constructed. Finally, by comparing with an existing method, the feasibility and effectiveness of the proposed method is tested on the sintering process of ternary cathode materials. Detailed comparisons show the superiority of the proposed method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3