Affiliation:
1. School of Aerospace Engineering, Xiamen University, Xiamen 361100, China
Abstract
Accurate shaft speed extraction is crucial for synchronous sampling in the fault diagnosis of wind turbines. However, traditional narrow-bandpass filtering techniques face limitations when dealing with large fluctuations in rotational speed, hindering the accurate construction of an instantaneous phase for synchronous resampling of a shaft. To overcome this, we propose a tachometer-less synchronous sampling based on Scaling-Basis Chirplet Transform, tailored to a wind turbine’s structure and operating conditions. The algorithm generates a time–frequency representation of the vibration response, revealing time-varying characteristics even under large speed fluctuations. Using maximum tracking on the time–frequency spectrum, we extract instantaneous speed and compare its accuracy with tachometer-acquired results. The instantaneous phase is obtained through numerical integration, and vibration data are resampled synchronously using inverse function interpolation in the digital domain. Numerical simulations and practical cases of wind turbines demonstrate the effectiveness and the engineering applicability of our methodology.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献