Multi-Objective Optimization of the Geometry of a Non-Pneumatic Tire for Three-Dimensional Stiffness Adaptation

Author:

Liu XiaoyuORCID,Xu Ting,Zhu Liangliang,Gao Fei

Abstract

Non-pneumatic tires (NPTs) have been widely used for their advantages of no run-flat, no need for air maintenance, and unique stiffness characteristics. This study focuses on the design of a spoke of a Fibonacci spiral non-pneumatic tire (FS-NPT) based on its properties of three-dimensional stiffness. Finite element (FE) models, parametric studies, designs of experiments (DOEs), and sensitivity analyses are conducted to study the effect on the three-dimensional stiffness considering three design variables: (a) the thickness of the spokes, (b) the radius of the first Fibonacci spiral of the spoke, and (c) the width of the spokes of the FS-NPT. The results show that variation in all three design parameters had no considerable effect on the lateral stiffness. The results from the DOE are used to create a response surface model (RSM) for the multi-objective function (minimal SSD) and a constraint on the weight of the FS-NPT. The analytical RSM functions are optimized for minimizing the SSD subjected to the given constraint. The results indicate that all three design variables of the spoke had a significant effect on the vertical stiffness. The spoke radius had no potential effect on the longitudinal stiffness of the NPT. Hence, the three-dimensional stiffness of the FS-NPT has a certain independent design. This work demonstrates the advantages of non-pneumatic tires, especially FS-NPTs, in three-dimensional stiffness decoupling. This study guides the industrial production of flexible-spoke bionic NPTs by providing a very simple spoke structure. The optimization results show that FS-NPTs have a large stiffness design range. The different stiffness targets can be achieved by adjusting different combinations of the design variables, and the tire mass does not increase significantly.

Funder

Research and development of energy-saving and environment-friendly high-performance non-pneumatic tire of Jihua Laboratory

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3