Safety Control Architecture for Ventricular Assist Devices

Author:

Cavalheiro André C. M.ORCID,Santos Filho Diolino J.ORCID,Dias Jônatas C.ORCID,Andrade Aron J. P.ORCID,Cardoso José R.ORCID,Tsuzuki Marcos S. G.ORCID

Abstract

In patients with severe heart disease, the implantation of a ventricular assist device (VAD) may be necessary, especially in patients with an indication for heart transplantation. For this, the Institute Dante Pazzanese of Cardiology (IDPC) has developed an implantable centrifugal blood pump that will be able to help a diseased human heart to maintain physiological blood flow and pressure. This device will be used as a totally or partially implantable VAD. Therefore, performance assurance and correct specification of the VAD are important factors in achieving a safe interaction between the device and the patient’s behavior or condition. Even with reliable devices, some failures may occur if the pumping control does not keep up with changes in the patient’s behavior or condition. If the VAD control system has no fault tolerance and no system dynamic adaptation that occurs according to changes in the patient’s cardiovascular system, a number of limitations can be observed in the results and effectiveness of these devices, especially in patients with acute comorbidities. This work proposes the application of a mechatronic approach to this class of devices based on advanced control, instrumentation, and automation techniques to define a method to develop a hierarchical supervisory control system capable of dynamically, automatically, and safely VAD control. For this methodology, concepts based on Bayesian networks (BN) were used to diagnose the patient’s cardiovascular system conditions, Petri nets (PN) to generate the VAD control algorithm, and safety instrumented systems to ensure the safety of the VAD system.

Funder

National Council for Scientific and Technological Development

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3