A Neural Network Weights Initialization Approach for Diagnosing Real Aircraft Engine Inter-Shaft Bearing Faults

Author:

Berghout Tarek1ORCID,Bentrcia Toufik1,Lim Wei Hong2ORCID,Benbouzid Mohamed34ORCID

Affiliation:

1. Laboratory of Automation and Manufacturing Engineering, University of Batna 2, Batna 05000, Algeria

2. Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur 56000, Malaysia

3. Institut de Recherche Dupuy de Lôme (UMR CNRS 6027), University of Brest, 29238 Brest, France

4. Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China

Abstract

The deep learning diagnosis of aircraft engine-bearing faults enables cost-effective predictive maintenance while playing an important role in increasing the safety, reliability, and efficiency of aircraft operations. Because of highly dynamic and harsh operating conditions of this system, such modeling is challenging due to data complexity and drift, making it difficult to reveal failure patterns. As a result, the objective of this study is dual. To begin, a highly structured data preprocessing strategy ranging from extraction, denoising, outlier removal, scaling, and balancing is provided to solve data complexity that resides specifically in outliers, noise, and data imbalance problems. Gap statistics under k-means clustering are used to evaluate preprocessing results, providing a quantitative estimate of the ideal number of clusters and thereby enhancing data representations. This is the first time, to the best of authors’ knowledge, that such a criterion has been employed for an important step in a preliminary ground truth validation in supervised learning. Furthermore, to tackle data drift issues, long-short term memory (LSTM) adaptive learning features are used and subjected to a learning parameter improvement method utilizing recursive weights initialization (RWI) across several rounds. The strength of such methodology can be seen by application to realistic, extremely new, complex, and dynamic data collected from a real test-bench. Cross validation of a single LSTM layer model with only 10 neurons shows its ability to enhance classification performance by 7.7508% over state-of-the-art results, obtaining a classification accuracy of 92.03 ± 0.0849%, which is an exceptional performance in such a benchmark.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3