Q-Learning with the Variable Box Method: A Case Study to Land a Solid Rocket

Author:

Tevera-Ruiz Alejandro1ORCID,Garcia-Rodriguez Rodolfo2ORCID,Parra-Vega Vicente1ORCID,Ramos-Velasco Luis Enrique2ORCID

Affiliation:

1. Robotics and Advanced Manufacturing Department, Research Center for Advanced Studies (CINVESTAV), Ramos Arizpe 25900, Mexico

2. Aeronautical Engineering Program and Postgraduate Program in Aerospace Engineering, Univ. Politécnica Metropolitana de Hidalgo, Tolcayuca 43860, Mexico

Abstract

Some critical tasks require refined actions near the target, for instance, steering a car in a crowded parking lot or landing a rocket. These tasks are critical because failure to comply with the constraints near the target may lead to a fatal (unrecoverable) condition. Thus, a higher resolution action is required near the target to increase maneuvering precision. Moreover, completing the task becomes more challenging if the environment changes or is uncertain. Therefore, novel approaches have been proposed for these problems. In particular, reinforcement learning schemes such as Q-learning have been suggested to learn from scratch, subject to exploring action–state causal relationships aimed at action decisions that lead to an increase in the reward. Q-learning refines iterative action inputs by exploring state spaces that maximize the reward. However, reducing the (constant) resolution box needed for critical tasks increases the computational load, which may lead to the tantamount curse of the dimensionality problem. This paper proposes a variable box method to maintain a low number of boxes but reduce its resolution only near the target to increase action resolution as needed. The proposal is applied to a critical task such as landing a solid rocket, whose dynamics are highly nonlinear, underactuated, non-affine, and subject to environmental disturbances. Simulations show successful landing without leading to a curse of dimensionality, typical of the classical (constant box) Q-learning scheme.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3