Abstract
Manned spaceflight has already become an important approach to space science exploration, while long-term exposure to the microgravity environment will lead to severe health problems for astronauts, including bone loss, muscle atrophy, and cardiovascular function decline. In order to mitigate or eliminate those negative influences, this paper presents a cable-driven exercise equipment that can be applied in a microgravity environment to render multi-functional on-orbit physical exercise modes for astronauts. First, the structure of cable module and the configuration of the equipment were proposed. Second, a two-level controller was provided, including the cable tension distribution algorithm and tension controller of the cable module. A safety protection strategy was proposed to ensure the safety of the astronaut. Furthermore, simulation and running experiment studies of the equipment were conducted, the results demonstrate that the load force of the equipment could achieve a high-level accuracy, and the exercise status of the astronaut could be monitored and protected in the meantime. Therefore, physical exercises could be carried out by the assistance of the equipment to keep astronauts in good shape on-orbit.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献