Depth Control of an Oil Bladder Type Deep-Sea AUV Based on Fuzzy Adaptive Linear Active Disturbance Rejection Control

Author:

Zhang Fengrui,Hou Jiaoyi,Ning Dayong,Gong Yongjun

Abstract

The deep-sea autonomous underwater vehicle (AUV) is equipment of vital importance for ocean exploration, monitoring, and surveying. With a variable buoyancy system (VBS), AUV can achieve rising, diving, and hovering in the water column. This paper proposes a deep-sea AUV with an oil bladder type hydraulic VBS, which controls the oil flow rate with a proportional valve. However, the implementation of accurate depth control for AUV faces various challenges due to the varying water density with depth, the non-linear feature of the hydraulic system, and the disturbance from sea flows and currents. To tackle these problems, a third-order linear active disturbance rejection controller (LADRC) and its fuzzy adaptive version were designed and implemented in MATLAB/Simulink based on the state-space function of the proposed AUV system. Compared with the conventional PID controller, the simulation results indicate that the proposed LADRC controller shows strong robustness to disturbance, with other advantages including smaller steady-state error, overshoot, settling time, and response time. Moreover, the proposed fuzzy LADRC controller could further decrease the overshoot caused by the increasing target distance. The results prove that the designed depth controllers can meet the control requirements of the proposed deep-sea AUV.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3