Research on Sliding Mode Control Method of Medium and Low Speed Maglev Train Based on Linear Extended State Observer

Author:

Zhu Yehui,Yang Qing,Li Jie,Wang Lianchun

Abstract

As a new mode of transportation, maglev train has a broad prospect. As one of the key technologies of maglev train, suspension control technology has been a hot research field. Maglev train has the characteristics of complex system modeling, strong nonlinear model, unstable open-loop system, and complex and changeable working conditions. To date, the widely used method is still the design of PID controller based on linearized maglev model. However, with the passage of time, its shortcomings become increasingly clear. To achieve better control effect, an adaptive sliding mode control method based on linear extended state observer (LESO) is proposed in this paper, which not only improves the response speed of the system, but also improves the robustness and anti-interference ability of the system, and greatly reduces the impact of external disturbances on the suspension stability. First, the dynamic model of the system is established, the control characteristics of the system are analyzed, and the design method of current loop is proposed to reduce the order of the system model. Then, the traditional sliding mode control based on reaching law is designed for the reduced order system, and the performance and shortcomings of the controller are analyzed. Aiming at the defects of traditional sliding mode control, a sliding mode controller based on linear extended state observer is designed. The total disturbance and unmodeled part of the system are estimated in real time by LESO and eliminated in sliding mode control. It can be proved that the designed controller can ensure the stability of the closed-loop system, the system state can converge asymptotically in the neighborhood near the expected value, and has a very fast convergence speed. At the same time, the system has strong robustness to noise and external disturbances. Finally, the effectiveness of the proposed controller is verified by simulation and experiment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference19 articles.

1. Electromagnet Suspension Dynamics & Control;Sinha,1987

2. Summary of Changsha Maglev Express train;Tong;Electr. Locomot. Mass Transit Veh.,2020

3. Application study on digital suspension controller of maglev train;Li;Electr. Drive Locomot.,2002

4. The "Magnetic wheel" in the suspension of high-speed ground transportation vehicles

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3