Affiliation:
1. Department of System Dynamics and Friction Physics, Technische Universität Berlin, 10623 Berlin, Germany
Abstract
In the present work, a recently extended version of the method of dimensionality reduction (MDR) for layered elastic media is applied for the first time using a semi-analytical approach. It is based on a priori knowledge of the cylindrical flat punch solution which is determined numerically using the boundary element method (BEM). We consider arbitrary indenters of revolution producing a circular area of contact with bonded and unbonded layers of arbitrary thickness. The proposed method reduces the contact solution to the numerically efficient evaluation of simple one-dimensional integrals. We further show that the solution of JKR-adhesive contacts with layers and contacts with linear-viscoelastic layers is straightforward using the well-known MDR formalisms. A specific focus has been devoted to study the thickness effect in different application examples. Comparisons with the literature and finite element simulations show very good agreement with the proposed method.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献