Data-Driven-Model-Based Full-Region Optimal Mapping Method of Permanent Magnet Synchronous Motors in Wide Temperature Range

Author:

Bian Yuanjun12ORCID,Wen Xuhui12,Fan Tao12,Li Hongyang2,Liu Zhongyong12

Affiliation:

1. University of Chinese Academy of Sciences, Beijing 100049, China

2. Institute of Electrical Engineering Chinese Academy of Sciences, Beijing 100190, China

Abstract

To improve the motor efficiency and expand the actual external characteristic region of electric vehicle permanent magnet synchronous motor (PMSM) drive systems, the optimal operation of mapping torque to d-q axis current is usually applied. Nevertheless, it is difficult to deal with the complex mechanism factors such as parameter saturation and temperature change for the traditional optimization method based on the basic voltage equation of PMSM. In this paper, a black-box-model-based torque–current optimization method is proposed, which does not rely on any information of the inner mechanism model, and the derivative-free, optimal, improved Nelder–Mead Simplex(NMS) method is used to minimize the copper loss and maximize the electromagnetic torque in the flux-weakening region. Moreover, a synchronous online compensation of the electromagnetic torque and optimal current angle is implemented, in view of the time variation of permanent magnet flux with temperature. Finally, through a comparison experiment with the nominal-parameters-based formula maximum torque per ampere (MTPA) method, the proposed method achieves higher torque accuracy and better efficiency performance in a wide temperature range with regard to a reasonable response speed.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3