Topology Optimization of Geometrically Nonlinear Structures Based on a Self-Adaptive Material Interpolation Scheme

Author:

Liang Junwen1,Zhang Xianmin1ORCID,Zhu Benliang1ORCID,Wang Rixin1,Cui Chaoyu1ORCID,Zhang Hongchuan1

Affiliation:

1. Guangdong Key Laboratory of Precision Equipment and Manufacturing Technology, South China University of Technology, Guangzhou 510640, China

Abstract

In this paper, a simple and effective self-adaptive material interpolation scheme is proposed to solve the numerical instability problem, which may occur in topology optimization considering geometrical nonlinearity when using density-based method. The primary concept of the proposed method revolves around enhancing the deformation resistance of minimum-density or intermediatedensity elements, thus avoiding numerical instability due to excessive distortion of these elements. The proposed self-adaptive material interpolation scheme is based on the power law method, and the stiffness of minimum-density or intermediate-density elements can be adjusted by a single parameter, α. During the optimization process, the parameter α will be changed according to an adaptive adjustment strategy to ensure that elements within the design domain are not excessively distorted, while the mechanical behavior of the structure can be approximated with acceptable accuracy. Numerical examples of minimizing compliance and maximizing displacement of structure are given to prove the validity of the proposed self-adaptive material interpolation scheme.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on Topology Optimization Design for Additive Manufacturing;Engineering, Technology & Applied Science Research;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3