Prediction of Abrasive Belt Wear Based on BP Neural Network

Author:

Cao Yuanxun,Zhao Ji,Qu Xingtian,Wang Xin,Liu Bowen

Abstract

Abrasive belt grinding is the key technology in high-end precision manufacturing field, but the working condition of abrasive particles on the surface of the belt will directly affect the quality and efficiency during processing. Aiming at the problem of the inability to monitor the wearing status of abrasive belt in real-time during the grinding process, and the challenge of time-consuming control while shutdown for detection, this paper proposes a method for predicating the wear of abrasive belt while the grinding process based on back-propagation (BP) neural network. First, experiments are carried out based on ultra-depth-of-field detection technology, and different parameter combinations are used to measure the degree of abrasive belt wear. Then the effects of different grinding speeds, different contact pressures, and different work piece materials on the abrasive belt wear rate are obtained. It can be concluded that the abrasive belt wear rate gradually increases as the grinding speed of the abrasive belt increases. With the increase of steel grade, the hardness of the steel structure increases, which intensifies the abrasive belt wear. As the contact pressure increases, the pressure on a single abrasive particle increases, which ultimately leads to increased wear. With the increase of contact pressure, the increase of the wear rate of materials with higher hardness is greater. By utilizing the artificial intelligence BP neural network method, 18 sets of experiment data are used for training BP neural network while 9 sets of data are used for verification, and the nonlinear mapping relationship between various process parameter combinations such as grinding speed, contact pressure, workpiece material, and wear rate is established to predict the wear degree of abrasive belt. Finally, the results of verification by examples show that the method proposed in this paper can fulfill the purpose of quickly and accurately predicting the degree of abrasive belt wear, which can be used for guiding the manufacturing processing, and greatly improving the processing efficiency.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3