Abstract
Model-based force control for motion and force tracking faces significant challenges on real quadruped platforms due to the apparent model inaccuracies. In this paper, we present a multi-objective optimal torque control for hydraulic quadruped robots under significant model errors, such as non-modelable hydraulic components, linearization, disturbances, etc. More specifically, the centroidal dynamics are first modeled to project the dynamics of the floating-based whole-body behaviors to the centroidal frame. Model error compensation mechanisms are subsequently developed to track the reference motion of the CoM, torso, and foot-end trajectories, which are mapped into the joint space. Furthermore, a multi-objective optimal torque control scheme is formulated using quadratic programming (QP) to coordinate follow the reference motion and ground reaction forces simultaneously while satisfying all constraints. Finally, we present a series of simulations as well as experiments on a real hydraulic quadruped platform, EHbot. The results demonstrate that the proposed torque control scheme is robust to large model inaccuracies and improves the performance of the overall system.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献