Abstract
The pressure-volume diagram (p−V diagram) is an established method for analyzing the thermodynamic process in the cylinder of a reciprocating compressor as well as the fault of its core components including valves. The failure of suction/discharge valves is the most common cause of unscheduled shutdowns, and undetected failure may lead to catastrophic accidents. Although researchers have investigated fault classification by various estimation techniques and case studies, few have looked deeper into the barriers and pathways to realize the level determination of faults. The initial stage of valve failure is characterized in the form of mild leakage; if this is identified at this period, more serious accidents can be prevented. This study proposes a fault diagnosis and severity estimation method of the reciprocating compressor valve by virtue of features extracted from the p−V diagram. Four-dimensional characteristic variables consisting of the pressure ratio, process angle coefficient, area coefficient, and process index coefficient are extracted from the p−V diagram. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were applied to establish the diagnostic model, where PCA realizes feature amplification and projection, then LDA implements feature dimensionality reduction and failure prediction. The method was validated by the diagnosis of various levels of severity of valve leakage in a reciprocating compressor, and further, applied in the diagnosis of two actual faults: Mild leakage caused by the cracked valve plate in a reciprocating compressor, and serious leakage caused by the deformed valve in a hydraulically driven piston compressor for a hydrogen refueling station (HRS).
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献