Investigation of Valve Seat Cone Angle on Small Opening Direct-Acting Relief Valve Cavitation Noise

Author:

Qiu Tiechao12ORCID,Yang Liu123ORCID,Zhang Jiannan4,Wang Zhanqi12,Song Yanhe12,Ai Chao123ORCID

Affiliation:

1. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China

2. Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao 066004, China

3. State Key Laboratory of Crane Technology, Yanshan University, Qinhuangdao 066004, China

4. Henan Aerospace Hydraulic and Pneumatic Technology Co., Ltd., Zhengzhou 450016, China

Abstract

Direct-acting relief valves are important pressure-control components in hydraulic systems; however, noise problems are now common. This study aimed to reduce and numerically analyze the valve cavitation and noise using the Zwart–Gerber–Belamri (ZBG) model with the Ffowcs Williams and Hawkings (FW–H) model to optimize the design based on the sound field perspective. First, a direct-acting relief valve flow field model was established to determine the relationship between the seat structure and the degree of cavitation through a CFD (Computational Fluid Dynamics) simulation. Second, sound field analysis was conducted based on the cavitation and non-cavitation flow fields, respectively, and the resulting noise levels were compared. Finally, prototypes of the relief valve were manufactured, and noise levels between the original and optimized valves were compared. The results revealed that cavitation within the relief valve generated noise while optimizing the valve seat cone angle suppressed this phenomenon, thereby reducing the noise emitted by the optimized valve by 18.2 dB compared to the original valve. These findings can serve as a guide for designing and optimizing direct-acting relief valves.

Funder

National Natural Science Foundation of China under Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3