Formation Control of Dual Auto Guided Vehicles Based on Compensation Method in 5G Networks

Author:

Wang Liuquan,Liu Qiang,Zang Chenxin,Zhu Sanying,Gan Chaoyang,Liu Yanqiang

Abstract

With commercial application of 5G networks, many researchers have started paying attention to real-time control in 5G networks. This paper focuses on dual auto guided vehicles collaborative transport scenarios and designs a formation control system in current commercial 5G networks. Firstly, the structure of the 5G network researched in this paper is introduced. Then the round-trip time of 5G networks is measured and analyzed. The result shows that although the 5G round-trip time has randomness, it is mainly concentrated in 19 ± 3 ms, and the jitter mainly in 0 ± 3 ms. The Kalman filter is applied to estimate the transmission delay and experiment result shows the effectiveness of the estimation. Furthermore, the total delay including transmission delay and execution delay in control system is discussed. After establishing the AGV kinematic and formation model, complete control system based on compensation method is proposed. Finally, an experiment is carried out. Compared to the result without formation control, maximum distance error is reduced by 82.61% on average, while maximum angle error 45.91% on average. The result shows the effectiveness of the control system in formation maintaining in 5G network.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference30 articles.

1. 5G Swarm Production: Advanced Industrial Manufacturing Concepts Enabled by Wireless Automation

2. 5G Use Cases for Verticals China 2020https://www.gsma.com/greater-china/resources/5g-use-cases-for-verticals-china-2020-3/

3. Report on Implementation of Options for Monitoring of Workpiece and Machineshttps://5gsmart.eu/wp-content/uploads/5G-SMART-D3.3-v1.0.pdf

4. Release 16 Description; Summary of Rel-16 Work Itemshttps://www.3gpp.org/

5. 5G Evolution: A View on 5G Cellular Technology Beyond 3GPP Release 15

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3