Research and Experimental Verification on Topology-Optimization Design Method of Space Mirror Based on Additive-Manufacturing Technology

Author:

Fan YanchaoORCID,Dong Deyi,Li Chao,Sun Yuxin,Zhang ZhiyuORCID,Wu FanluORCID,Yang Liwei,Li Quhao,Guan Yingjun

Abstract

As one of the most-critical components in space optical cameras, the performance of space mirrors directly affects the imaging quality of space optical cameras, and the lightweight form of mirror blanks is a key factor affecting the structural quality and the surface-shape accuracy of mirrors. For the design requirements of lightweight and high surface-shape accuracy with space mirrors, this study proposes a design and manufacturing method that integrates topology-optimization with additive-manufacturing technology. This article firstly introduced the basic process and key technologies of space-mirror design and analyzed the superiority of combining a topology-optimized configuration design and additive-manufacturing technology; secondly, the topology-optimized design method of a back-open-structure mirror was used to complete the scheme design of a Φ260 mm aperture mirror; finally, the laser selective-melting manufacturing technology was used to complete the Φ260 mm aperture mirror blank. The mirror and its support structure were assembled and tested in a modal mode; the resonant frequencies of the mirror assembly were all over 600 Hz; and the deviation from the analytical results was within 2%. The optical surface of the mirror was turned by the single-point diamond-turning (SPDT) technique. The accuracy of the optical surface was checked by a Zygo interferometer. The RMS accuracy of the mirror surface was 0.041λ (λ is the wavelength; λ = 632 nm). In the test of the influence of gravity on the surface-shape accuracy, the mirror was turned over, which was equivalent to twice the gravity, and the RMS of the mirror surface-shape accuracy was 0.043λ, which met the requirement. The verification results show that the mirror designed and fabricated by the additive-manufacturing-based mirror-topology-optimization method can be prepared by the existing process, and the machinability and mechanical properties can meet the requirements, which provides an effective development method for improving the structural design and optimizing the manufacturing of space reflectors.

Funder

National Natural Science Foundation of China

Civil Aerospace Pre-research Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3