Affiliation:
1. School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
2. Department of Electrical and Electronics Engineering, Faculty of Engineering Sciences, University of Nyala, Nyala 63311, Sudan
3. College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
Abstract
This article presents a new design method of energy management strategy with model-free DC-Bus voltage control for the fuel-cell/battery/supercapacitor hybrid electric vehicle (FCHEV) system to enhance the power performance, fuel consumption, and fuel cell lifetime by considering regulation of DC-bus voltage. First, an efficient frequency-separating based-energy management strategy (EMS) is designed using Harr wavelet transform (HWT), adaptive low-pass filter, and interval type–2 fuzzy controller (IT2FC) to determine the appropriate power distribution for different power sources. Second, the ultra-local model (ULM) is introduced to re-formulate the FCHEV system by the knowledge of the input and output signals. Then, a novel adaptive model-free integral terminal sliding mode control (AMFITSMC) based on nonlinear disturbance observer (NDO) is proposed to force the actual values of the DC-link bus voltage and the power source’s currents track their obtained reference trajectories, wherein the NDO is used to approximate the unknown dynamics of the ULM. Moreover, the Lyapunov theorem is used to verify the stability of AMFITSMC via a closed-loop system. Finally, the FCHEV system with the presented method is modeled on a Matlab/Simulink environment, and different driving schedules like WLTP, UDDS, and HWFET driving cycles are utilized for investigation. The corresponding simulation results show that the proposed technique provides better results than the other methods, such as operational mode strategy and fuzzy logic control, in terms of the reduction of fuel consumption and fuel cell power fluctuations.
Funder
Tertiary Education Scientific Research Project of Guangzhou Municipal Education Bureau
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献