Effective Energy Management Strategy with Model-Free DC-Bus Voltage Control for Fuel Cell/Battery/Supercapacitor Hybrid Electric Vehicle System

Author:

Mohammed Omer Abbaker Ahmed12ORCID,Peng Lingxi1,Hamid Gomaa Haroun Ali2ORCID,Ishag Ahmed Mohamed2,Abdalla Modawy Adam Ali23ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China

2. Department of Electrical and Electronics Engineering, Faculty of Engineering Sciences, University of Nyala, Nyala 63311, Sudan

3. College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China

Abstract

This article presents a new design method of energy management strategy with model-free DC-Bus voltage control for the fuel-cell/battery/supercapacitor hybrid electric vehicle (FCHEV) system to enhance the power performance, fuel consumption, and fuel cell lifetime by considering regulation of DC-bus voltage. First, an efficient frequency-separating based-energy management strategy (EMS) is designed using Harr wavelet transform (HWT), adaptive low-pass filter, and interval type–2 fuzzy controller (IT2FC) to determine the appropriate power distribution for different power sources. Second, the ultra-local model (ULM) is introduced to re-formulate the FCHEV system by the knowledge of the input and output signals. Then, a novel adaptive model-free integral terminal sliding mode control (AMFITSMC) based on nonlinear disturbance observer (NDO) is proposed to force the actual values of the DC-link bus voltage and the power source’s currents track their obtained reference trajectories, wherein the NDO is used to approximate the unknown dynamics of the ULM. Moreover, the Lyapunov theorem is used to verify the stability of AMFITSMC via a closed-loop system. Finally, the FCHEV system with the presented method is modeled on a Matlab/Simulink environment, and different driving schedules like WLTP, UDDS, and HWFET driving cycles are utilized for investigation. The corresponding simulation results show that the proposed technique provides better results than the other methods, such as operational mode strategy and fuzzy logic control, in terms of the reduction of fuel consumption and fuel cell power fluctuations.

Funder

Tertiary Education Scientific Research Project of Guangzhou Municipal Education Bureau

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3