Self-Optimizing Control System to Maximize Power Extraction and Minimize Loads on the Blades of a Wind Turbine

Author:

Rivas Carlos E.1,Malo Gilson D.1,Minchala Luis I.1ORCID,Probst Oliver2ORCID

Affiliation:

1. Department of Electrical Engineering, Electronics and Telecommunications, Universidad de Cuenca, Ave. 12 de Abril y Agustin Cueva, Cuenca 010203, Ecuador

2. School of Engineering and Science, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico

Abstract

This research proposes a methodology for designing and testing a self-optimizing control (SOC) algorithm applied to a wind energy conversion system (WECS). The SOC maximizes WECS power output and reduces the mechanical stress of the wind turbine (WT) blades by optimizing a multiobjective cost function. The cost function computation uses a combined blade element momentum (BEM) and thin-wall beam (TWB) model for calculating wind the turbine power output and blades’ stress. The SOC deployment implies a low computational cost due to an optimization space reduction via a matrix projection applied to a measurement vector, based on a prior offline calculation of a projection matrix, H. Furthermore, the SOC optimizes the operation of the WECS in the presence of uncertainty associated with the wind speed variation by controlling a linear combination of measured variables to a set point. A MATLAB simulation of a wind turbine model allows us to compare the WECS operating with the SOC, a baseline classic control system (BCS), and a nonlinear model predictive controller (NMPC). The SOC algorithm is evaluated in terms of power output, blades’ stress, and computational cost against the BCS and NMPC. The power output and blades’ stress performance of the SOC algorithm are compared with that of the BCS and NMPC, showing a significant improvement in both cases. The simulation results demonstrate that the proposed SOC can effectively optimize a WECS operation in real time with minimal computational costs.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference35 articles.

1. GWEC (2021, December 20). Global Wind Report 2021. Available online: https://gwec.net/global-wind-report-2021/.

2. Wu, B., Lang, Y., Zargari, N., and Kouro, S. (2011). Power Conversion and Control of Wind Energy Systems, Wiley-IEEE Press. [1st ed.].

3. Heier, S. (2014). Grid Integration of Wind Energy, Onshore and Offshore Conversion Systems, John Wiley & Sons, Ltd.. [3rd ed.]. Chapter 2.

4. Ackermann, T. (2005). Wind Power in Power Systems, John Wiley & Sons, Ltd.. [1st ed.]. Chapter 3.

5. Rojas Maita, C.P. (2020). Evaluación de los Recursos Eólicos para la Generación de Energía Eléctrica a Pequeña Escala en el Distrito de Huachac. [Master’s Thesis, Universidad Nacional del Centro del Perú (UNCP)].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3