A Fault Diagnosis Model for Coaxial-Rotor Unit Using Bidirectional Gate Recurrent Unit and Highway Network

Author:

Peng Zhaoqin,Dong Kunyu,Wang Yan,Huang Xucong

Abstract

A turbojet engine is the most significant part of an Internal Combustion Engine (ICE) for Hybrid Electric Vehicles. Specifically, the coaxial-rotor unit is the key component, whose performance largely affects the working efficiency. Thereby, the fault diagnosis methods for coaxial-rotor units is a main focus. In line with our test results, the bearing circlip is the most vulnerable element while rotating. Moreover, the low-speed rotating fault diagnosis is even challenging for current methods. Since the fault diagnosis on the bearing circlip of coaxial-rotor units is absent, this paper establishes a test rig on a running coaxial-rotor unit under different working conditions. The three-directional vibration signals are collected and analyzed to demonstrate the working states. On the task of bearing circlip failure classification, a deep-learning-based model using the Bidirectional Gate Recurrent Unit and the Highway Network is developed, which is capable of capturing hidden features and removing unrelated information. For working performance evaluation, experiments on the data of different rotating speeds are carried out. Among all the fault diagnosis methods, our model is the best approach and achieves an average accuracy of 99.4%. The encouraging results reveal that the proposed model is effective in both the high-speed and low-speed fault diagnosis of bearing circlip malfunction.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3