Abstract
Inter-turn fault (ITF), a typical motor fault, results in significant variations in the thermal characteristics of a motor. For fault, temperature rise (TR) experiments and thermal field-stress field simulations of an induction motor are carried out to reveal the fault characteristics related to ITF. First, based on the actual structure and the cooling type of the motor, a whole-domain simulation model of the fault thermal field was established. The reasonable equivalence of the motor and the calculation of the heat transfer boundaries were conducted during the modeling process. Then, the three-dimensional transient thermal field under a rated load before and after the fault was obtained, and the accuracy of the simulation could be validated through the comparison of the measured TR at several temperature-measuring points. The heat-transfer law and the notable thermal characteristics of the fault can be presented by analyzing the simulated and measured temperature data. In addition, a fault feature is proposed to provide a reference for diagnosis using the temperature difference of winding at different positions at different moments. Finally, the rotor thermal stress distribution of the normal and faulty motor is obtained by thermal-stress-coupled calculation, which can be used to evaluate the possibility of rotor fault caused by ITF.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献