Design and Experimental Study on the Torque Balancing Mechanism of a Satellite-Borne Two-Axis Rotary Table

Author:

Wang Yuzhe12,Sui Xiaodong12,Zhang Tianqing12,Nie Ting1,Chen Changzheng1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

With the rapid development of science and technology, high-resolution remote sensing cameras are now widely used in various fields. At the beginning of camera attitude adjustment, residual torque due to state changes can affect platform stability and lead to the degradation of imaging quality. This paper analyzes the effect of external disturbances on the attitude of the satellite platform according to the Newton–Euler method. In order to effectively realize the self-balancing of the torque of the remote sensing camera rotary table and eliminate the influence of the residual torque on the stability of the satellite platform, this study designs a torque balancing mechanism for the two-axis rotary table of a remote sensing camera based on the first-generation balancing mechanism. Firstly, this paper provides a detailed analysis of the mechanism equilibrium principle from the theoretical point of view based on the theories related to momentum moment theorem and momentum moment conservation law. Then, the dynamics model of the torque balancing mechanism is built, and the dynamics simulation analysis is carried out in this paper. The analysis results show that compared with the first-generation torque balancing mechanism, the residual torque of the second-generation torque balancing mechanism is reduced by 66.67%, the peak value of the residual torque is reduced by 57.55%, the mass of the balancing flywheel is reduced by 74.14%, and the torque balancing time is reduced by 42.86%. Finally, two torque balancing mechanism prototypes were fabricated at equal scale for test verification in this paper. The test results show that compared with the first-generation torque balancing mechanism, the residual torque of the second-generation test prototype is reduced by 40%, the peak of the residual torque is reduced by 25%, the mass of the balancing flywheel is reduced by 60.34%, and the torque balancing time is reduced by 51.06%. There are some differences between the simulation analysis and the experimental results, but the overall trend is consistent with the theory. Through theoretical derivation, simulation analysis and experimental verification, the correctness and feasibility of the proposed second-generation torque balancing mechanism are fully confirmed, which has certain reference significance and engineering application value for the torque self-balancing scheme of rotary tables.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3