Chatter Detection in Thin-Wall Milling Based on Multi-Sensor Fusion and Dual-Stream Residual Attention CNN

Author:

Zhan Danian1,Lu Dawei1,Gao Wenxiang1,Wei Haojie1,Sun Yuwen2

Affiliation:

1. AVIC Chengdu Aircraft Industrial (Group) Co., Ltd., Chengdu 610092, China

2. State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China

Abstract

Thin-walled parts exhibit high flexibility, rendering them susceptible to chatter during milling, which can significantly impact machining accuracy, surface quality, and productivity. Therefore, chatter detection plays a crucial role in thin-wall milling. In this study, a chatter detection method based on multi-sensor fusion and a dual-stream convolutional neural network (CNN) is proposed, which can effectively identify the machining status in thin-wall milling. Specifically, the acceleration signals and cutting force signals are first collected during the milling process and transformed into the frequency domain using fast Fourier transform (FFT). Secondly, a dual-stream CNN is designed to extract the hidden features from the spectrum of multi-sensor signals, thereby avoiding confusion when learning the features of each sensor signal. Then, considering that the characteristics of each sensor are of different importance for chatter detection, a joint attention mechanism based on residual connection is designed, and the feature weight coefficients are adaptively assigned to obtain the joint features. Finally, the joint features feed into a machining status classifier to identify chatter occurrences. To validate the feasibility and effectiveness of the proposed method, a series of milling tests are conducted. The results demonstrate that the proposed method can accurately distinguish between stable and chatter under various milling scenarios, achieving a detection accuracy of up to 98.68%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3