Dynamics Modeling and Redundant Force Optimization of Modular Combination Parallel Manipulator

Author:

Jiang Aimin12ORCID,Han Hasiaoqier12,Han Chunyang1,He Shuai1,Xu Zhenbang1ORCID,Wu Qingwen1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888, Dong Nanhu Road, Changchun 130033, China

2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The limb-driving force mutation of the modular combination parallel manipulator (MCPM) affects the alignment process of optical axis. In this paper, a novel optimization method based on the force mutation penalty term is proposed to solve the problem of driving force mutation. The kinematics and dynamics models of the manipulator are established using a modularization idea, reducing the complexity of the modeling process, and verified using co-simulation. Moreover, particle swarm optimization (PSO) is applied as an optimization tool. The effectiveness of the proposed method is confirmed by comparing it with the minimize-the-maximum and Moore–Penrose (M–P) methods, which are widely used to solve parallel manipulators with redundant drives.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association, Chinese Academy of Sciences

Jilin Scientific and Technological Development Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structural design and coupling analysis of multimode variable coupling parallel mobile robots;Industrial Robot: the international journal of robotics research and application;2024-05-14

2. Structural Design of a Multi Mode Variable Coupling Multi Axis Parallel Mobile Robot;Intelligent Robotics and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3