Analysis of the Influence of Nozzle Structure of Dry Powder Fire Extinguishing System on Supersonic Jet Characteristics

Author:

Ge Hongen1,Zhao Peng1,Zhu Cong1,Zhang Xin1,Liu Yuqi1

Affiliation:

1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

The nozzle, as a critical jet component in dry powder fire extinguishing systems, significantly affects jet characteristics through its geometric configuration. To explore the influence of structural parameters on ultrafine dry powder gas-solid two-phase jet characteristics, a bidirectional coupled numerical model based on the SST k-ω turbulence model and the Discrete Phase Model is employed. This study examines how variations in the semi-expansion angle (α) and semi-contraction angle (β) of the nozzle affect compressible gas flow behavior and particle distribution trajectories through a combination of simulations and experiments. The results indicate that when α = 2°, the gas jet is in an under-expanded state, leading to increased particle dispersion due to the stripping effect of the surrounding high-speed airflow. Within the range of x = 0–180 mm, the dry powder exhibits a diffusion trend. When α = 4.5°, the gas jet core region is the longest, providing optimal particle acceleration. Under constant inlet pressure, reducing α enhances particle collimation. The reduction of α alters the gas jet state, with α = 2° showing better powder diffusion compared to α = 6°. However, an excessively small α is detrimental to increasing the range of dry powder. With consistent structural parameters, the diffusion and range of dry powder remain the same across different β values, and variations in β have a relatively minor impact on supersonic jet characteristics. These findings offer theoretical guidance for optimizing and improving nozzles in ultrafine dry powder fire extinguishing systems.

Funder

key research and development of Shandong province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3