Affiliation:
1. Department of Industrial Engineering (DIN), University of Bologna, 40136 Bologna, Italy
2. Faculty of Mechanical and Civil Engineering in Kraljevo, University of Kragujevac, 36000 Kraljevo, Serbia
Abstract
The quality of additively produced parts and the achievable mechanical response may be affected by several factors, such as build orientation, heat treatment, or machining. A further rarely investigated factor is the position of the built part in the chamber with respect to inert gas flow. Previous studies have highlighted that the interaction between gas flow and laser track may induce an intense vaporization with consequent lack of fusion, particle entrainment, drop in density and denudation of the produced part, which is likely to detrimentally affect mechanical properties. This study addresses the effect of part position on the fatigue strength of heat-treated maraging steel MS1 produced by an EOSINT M280 machine in a nitrogen environment. Novelty arises from the lack of studies in this field, especially under fatigue. A factorial plan with subsequent statistical analysis highlighted that positioning the part upstream with respect to the gas flow leads to a slightly lower fatigue strength; however, no significant differences are observed. The failure mode, involving initiation from subsurface porosities of the same size, is also unaffected. Finally, a fatigue limit of 26% of the ultimate tensile strength is found, which is consistent with previous outcomes.
Funder
European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献