An IPMSM Control Structure Based on a Model Reference Adaptive Algorithm

Author:

Guo TongORCID,Chen Yongjie,Chen Qihuai,Lin Tianliang,Ren Haoling

Abstract

Traditional construction machinery has the disadvantages of low energy efficiency and poor emissions, which do not meet the requirements of environmentally friendly industrial development. Electric construction machinery has attracted more and more attention because of its advantages of zero emissions and high energy efficiency, which are considered to be important factors in the future development of construction machinery. Preliminary attempts to introduce electric motors into construction machinery usually only adopt the motor for simulating the working mode of the engine, with it providing power for the system. Because the output power of the motor needs to be matched with the actual load through the transmission of the hydraulic torque converter, it is difficult to maximize the advantages of high energy efficiency for the electric drive. This paper studied the direct drive technology within electric construction machinery and presents a model reference adaptive algorithm (MRAA) based on maximum torque per ampere (MTPA)-vector control of an internal permanent magnet synchronous motor (IPMSM). The reference motor model was established, and the real-time dynamic reference value of the motor was obtained based on a model with the motor voltage and current as inputs. Simulations based on MATLAB/Simulink verified the feasibility of this control method. The results indicate that the MRAA can identify the motor flux linkage value and the d-q axis inductance within 50 ms in real time, with the error controlled within 2%. Additionally, when the motor operates at low speed, compared with the traditional MTPA algorithm under fixed-parameter control, the starting torque ripple of the IPMSM control method based on reference model adaptation was reduced to 23.8%, which proves that the MRAA can achieve good low-speed response characteristics and stability.

Funder

Collaborative Innovation Platform of Fuzhou-Xiamen-Quanzhou Independent Innovation Demonstration Area

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3