Improved Wafer Map Inspection Using Attention Mechanism and Cosine Normalization

Author:

Xu QiaoORCID,Yu Naigong,Essaf Firdaous

Abstract

Wafer map inspection is essential for semiconductor manufacturing quality control and analysis. The deep convolutional neural network (DCNN) is the most effective algorithm in wafer defect pattern analysis. Traditional DCNNs rely heavily on high quality datasets for training. However, obtaining balanced and sufficient labeled data is difficult in practice. This paper reconsiders the causes of the imbalance and proposes a deep learning method that can learn robust knowledge from an imbalanced dataset using the attention mechanism and cosine normalization. We interpret the dataset imbalance as both a feature and a quantity distribution imbalance. To compensate for feature distribution imbalance, we add an improved convolutional attention module to the DCNN to enhance representation. In particular, a feature-map-specific direction mapping module is developed to amplify the positional information of defect clusters. For quantity distribution imbalance, the cosine normalization algorithm is proposed to replace the fully connected layer, and classifier fine-tuning is realized through a small amount of iterative training, which decreases the sensitivity to the quantitative distribution. The experimental results on real-world datasets demonstrate that the proposed method significantly improves the robustness of wafer map inspection and outperforms existing algorithms when trained on imbalanced datasets.

Funder

Beijing Municipal Education Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image Hash Layer Triggered CNN Framework for Wafer Map Failure Pattern Retrieval and Classification;ACM Transactions on Knowledge Discovery from Data;2023-12-19

2. Anomalous Wafer Map Detection and Localization using Unsupervised Learning;2023 International Conference on IC Design and Technology (ICICDT);2023-09-25

3. Analysis of Image Hashing in Wafer Map Failure Pattern Recognition;IEEE Transactions on Semiconductor Manufacturing;2023-08

4. Evolutionary computation-based reliability quantification and its application in big data analysis on semiconductor manufacturing;Applied Soft Computing;2023-03

5. A Systematic Review on Imbalanced Learning Methods in Intelligent Fault Diagnosis;IEEE Transactions on Instrumentation and Measurement;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3