Proximity Sensor for Thin Wire Recognition and Manipulation

Author:

Cirillo AndreaORCID,Laudante GianlucaORCID,Pirozzi SalvatoreORCID

Abstract

In robotic grasping and manipulation, the knowledge of a precise object pose represents a key issue. The point acquires even more importance when the objects and, then, the grasping areas become smaller. This is the case of Deformable Linear Object manipulation application where the robot shall autonomously work with thin wires which pose and shape estimation could become difficult given the limited object size and possible occlusion conditions. In such applications, a vision-based system could not be enough to obtain accurate pose and shape estimation. In this work the authors propose a Time-of-Flight pre-touch sensor, integrated with a previously designed tactile sensor, for an accurate estimation of thin wire pose and shape. The paper presents the design and the characterization of the proposed sensor. Moreover, a specific object scanning and shape detection algorithm is presented. Experimental results support the proposed methodology, showing good performance. Hardware design and software applications are freely accessible to the reader.

Funder

H2020 Industrial Leadership

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An approach based on machine vision for the identification and shape estimation of deformable linear objects;Mechatronics;2023-12

2. Towards the Automation of Wire Harness Manufacturing: A Robotic Manipulator with Sensorized Fingers;2023 9th International Conference on Control, Decision and Information Technologies (CoDIT);2023-07-03

3. Wire Grasping by Using Proximity and Tactile Sensors;2022 IEEE 5th International Conference on Industrial Cyber-Physical Systems (ICPS);2022-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3