A Novel Tribometer and a Comprehensive Testing Method for Rolling-Sliding Conditions

Author:

Amoroso Pedro12ORCID,Vrček Aleks2,de Rooij Matthijn2ORCID

Affiliation:

1. Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

2. Laboratory for Surface Technology and Tribology, University of Twente, 7500 AE Enschede, The Netherlands

Abstract

This study introduces a method based on fine torque control to evaluate traction in rolling—liding line contacts under small slide-to-roll ratios (SRRs). To accomplish this, we engineered an innovative testing machine—a two-roller tribometer capable of precisely applying resisting torques to one of the rollers. Two types of tests were designed and conducted to validate our method and showcase the capabilities of the novel test setup. The first type, named the “Traction Decay Test”, proved to be effective in evaluating changes in the SRR over time. The second, named the “Torque-Mode Traction Test”, demonstrated its effectiveness in achieving ultra-low SRRs, in the order of 0.01%. As a result, traction curves with high resolution in the low SRR domain were constructed. This advancement provides the means for gaining a deeper understanding of traction coefficients, wear behavior, and tribological performance at ultra-low SRRs across diverse applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3