Comprehensive and Simplified Fault Diagnosis for Three-Phase Induction Motor Using Parity Equation Approach in Stator Current Reference Frame

Author:

Rodriguez-Blanco Marco Antonio,Golikov Victor,Vazquez-Avila Jose LuisORCID,Samovarov Oleg,Sanchez-Lara Rafael,Osorio-Sánchez René,Pérez-Ramírez Agustín

Abstract

In this paper, a complementary and simplified scheme to diagnose electrical faults in a three-phase induction motor using the parity equations approach during steady state operation bases on the stator current reference frame is presented. The proposed scheme allows us to identify the motor phase affected due to faults related to the stator side, such as current sensors, voltage sensors, and resistance. The results obtained in this work complement a detection system that uses the DQ model of the three-phase induction motor and parity equations focused on the synchronous reference frame, which can detect stator-side faults but cannot locate the affected phase. In addition, considering practical and operational aspects, the residual detection set obtained is simplified to three simple algebraic equations that are easy to implement. The simulation results using the PSIM simulation software and the experimental test allow us to validate the proposed scheme.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Data-Driven Design for Fault Diagnosis of Industrial Drives;Electronics;2022-11-23

2. Fault Diagnosis of Induction Motor Using D-Q Simplified Model and Parity Equations;Energies;2022-11-09

3. Computer Modeling of DC and AC Motor Systems by Different Methods and Determination of Errors them;2022 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA);2022-11-09

4. Power Losses Quadratic Approximation for the Electric Drive Load Condition Monitoring;2022 International Russian Automation Conference (RusAutoCon);2022-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3