Test Study of Seepage Characteristics of Coal Rock under Various Thermal, Hydraulic, and Mechanical Conditions

Author:

Zhao Yanlin,Liu QiangORCID,Tang Liming,Liao JianORCID,Chang Le,Wang Xiaguang,Li Yang,Ren Sheng

Abstract

The seepage characteristics of rocks under conditions of multi-field activity have always been important in the field of rock mechanics. This study used the MTS815 multi-functional electro-hydraulic servo rock testing machine to conduct seepage tests on long-flame coal specimens under different confining pressures, water pressures, and temperatures. This paper presents and discusses the seepage characteristics of coal specimens under the action of thermal hydraulic mechanical multi-field combinations. Considering parameters such as volumetric strain, temperature, thermal expansion coefficient, and initial porosity, the relationships of each parameter with porosity were obtained. The test results revealed that the volumetric strain of coal specimens increased gradually with the increase of temperature. The dynamic viscosity of water decreased with the increase of temperature, which accelerated the movement and circulation of water molecules. The increase in temperature caused the volume of the coal specimen to expand, the pores in the coal specimen squeezed against each other, the pore volume decreased, and the size of the seepage channel slowly decreased, which inhibited the seepage process. Furthermore, permeability gradually decreased with the increase of temperature. This inhibited the occurrence of seepage, and the higher the confining pressure, the lower was the permeability. The porosity of coal specimens decreased with the increase in temperature, which had an inhibitory effect on the seepage behavior. The results of this study provide experimental and theoretical support for the safe mining of coal and rock in underground mines.

Funder

National Natural Science Foundation of China

Graduate Research and Innovation Projects of Hunan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3