A Novel Experimental Method for Identifying the Flux Linkage Map of a High-Power Medium-Voltage Electrically Excited Synchronous Machine with Double Stator Winding

Author:

Turk NikolaORCID,Cikač Dominik,Bulić NevenORCID,Barbanti Stefano

Abstract

Accurate knowledge of the magnitude and position of the magnetic flux is essential for implementing field-oriented control (FOC) and achieving high-performance behaviour of AC drives. For estimating the flux in a wide range of speeds, so-called hybrid flux estimators, which are a combination of current-model and voltage-model based estimators, are usually used. Since the inductances are used as parameters in the current model, knowledge of the actual flux–current relationship, i.e., of the actual flux linkage map, is inevitable. In this paper, a novel experimental method for identifying the flux linkage map of an electrically excited synchronous machine (EESM) with double stator winding is proposed, which, unlike most existing experimental methods, does not require an additional machine to be used as a load. The flux is determined for different operating points to which the unloaded and sped-up machine is brought to by injecting d- and q-axis stator current components, whereby the current controllers are used to keep them constant for a certain operating point. The proposed method has been used to identify the flux linkage map of a medium-voltage EESM with double stator winding. A more than acceptable accuracy confirmed by comparison with three different analytical methods, together with the fact that it does not require a complex experimental setup, makes the proposed method suitable for the identification of a machine’s flux linkage map in an industrial environment.

Funder

University of Rijeka

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3