Response Surface Method for Optimization of Synchronous Reluctance Motor Rotor

Author:

Orlova SvetlanaORCID,Auzins Janis,Pugachov Vladislav,Rassõlkin AntonORCID,Vaimann ToomasORCID

Abstract

In order to define the best design structure of the synchronous reluctance motor (SynRM) rotor, optimization must be carried out, implying the selection of the best alternative for each specific criterion. The optimization of an electrical machine is a complicated work involving meeting different criteria requirements while dealing with a range of constraints. In order to implement the optimization, it is necessary to process a huge number of options, changing the combinations of the factors affecting criteria and restrictions, which is a time-consuming process. This research presents the optimization technique that gives a mathematically proven solution of the optimal rotor design of a synchronous reluctance machine obtained by using metamodels in the form of local polynomial approximations. Analysis of the results of numerical modeling and experimental investigation has been performed in order to validate the developed technique and recommendations. SynRM rotor was manufactured, with the stator to be taken from the 1.1 kW W21 WEG induction motor, which makes possible the relevant experimental study. The performance analysis of the developed SynRM is shown in the paper.

Funder

Latvian Council of Science

European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference25 articles.

1. Metamodel- based Optimization of Synchronous Reluctance Motor Rotor

2. World Energy Outlook 2016

3. Energy-Efficiency Policy Opportunities for Electric Motor Driven Systems;Waide,2011

4. Optimum Design of IE5 Energy-Efficiency Class Synchronous Reluctance Motor

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3