Dynamic Scaling of a Wing Structure Model Using Topology Optimization

Author:

Oliveira ÉderORCID,Sohouli AbdolrasoulORCID,Afonso FredericoORCID,da Silva Roberto Gil AnnesORCID,Suleman AfzalORCID

Abstract

In this paper, a dynamic scaling methodology is introduced to devise reduced scaled models of aircraft with the objectives of minimizing the development cost and exploring the design space. A promising way to accomplish this is using Topology Optimization (TO) for Additive Manufacturing (AM). Here, TO is employed to design a reduce scale model by matching its natural frequencies and mode shapes to those of a full scale model. Different TO strategies based on density approach are tested with the goal of achieving a dynamically scaled structure that can be manufactured. To achieve this goal, the TO solution should be free from intermediate densities, which is observed for some TO strategies but not all. When no penalization factor is applied: (i) the relative difference between natural frequencies is less than 1% and (ii) the estimated Modal Assurance Criteria (MAC) metric to evaluate the correlation between mode shapes is close to the ideal identity matrix. These results demonstrate the effectiveness of the dynamic scaling methodology. However, when using a penalization factor to avoid intermediate densities, the dynamic behavior correlation between full and scaled models degrades. This trend is more visible in the MAC metric, where off-diagonal terms above 20% and diagonal terms below 90% appear.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3