The Control of Handling Stability for Four-Wheel Steering Distributed Drive Electric Vehicles Based on a Phase Plane Analysis

Author:

Wang Guanfeng1ORCID,Song Qiang1ORCID

Affiliation:

1. National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology (BIT), Beijing 100081, China

Abstract

For the sake of enhancing the handling and stability of distributed drive electric vehicles (DDEVs) under four-wheel steering (4WS) conditions, this study proposes a novel hierarchical control strategy based on a phase plane analysis. This approach involves a meticulous comparison of the stable region in the phase plane to thoroughly analyze the intricate influence of the front wheel angle, rear wheel angle, road adhesion coefficient, and longitudinal speed on the complex dynamic performances of DDEVs and to accurately determine the critical stable-state parameter. Subsequently, a hierarchical control strategy is presented as an integrated solution to achieve the coordinated control of maneuverability and stability. On the upper control level, a model predictive control (MPC) motion controller is developed, wherein the real-time adjustment of the control weight matrix is ingeniously achieved by incorporating the crucial vehicle stable-state parameter. The lower control level is responsible for the optimal torque allocation among the four wheel motors to minimize the tire load rate, thereby ensuring a sufficient tire grip margin. The optimal torque distribution for the four wheel motors is achieved using a sophisticated two-level allocation algorithm, wherein the friction ellipse is employed as a judgement condition. Finally, this developed control strategy is thoroughly validated through co-simulation utilizing the CarSim 2019 and Simulink 2020b commercial software, demonstrating the validity of the developed control strategy. The comparative results indicate that the presented controller ensures a better tracking capability to the desired vehicle state while exhibiting improved handling stability under both the double lane shifting condition and the serpentine working condition.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3