Auto-Encoder-Enabled Anomaly Detection in Acceleration Data: Use Case Study in Container Handling Operations

Author:

Jakovlev Sergej,Voznak MiroslavORCID

Abstract

The sudden increase in containerization volumes around the globe has increased the overall number of cargo losses, infrastructure damage, and human errors. Most critical losses occur during handling procedures performed by port cranes while sliding the containers to the inner bays of the ship along the vertical cell guides, damaging the main metal frames and causing the structure to deform and lose its integrity and stability. Strong physical impacts may occur at any given moment, thus in-time information is critical to ensure the clarity of the processes without halting operations. This problem has not been addressed fully in the recent literature, either by researchers of the engineering community or by the logistics companies’ representatives. In this paper, we have analyzed the conventional means used to detect these critical impacts and found that they are outdated, having no real-time assessment capability, only post-factum visual evaluation results. More reliable and in-time information could benefit many actors in the transportation chain, making transportation processes more efficient, safer, and reliable. The proposed solution incorporates the monitoring hardware unit and the analytics mechanism, namely the auto-encoder technology, that uses the acceleration parameter to identify sensor data anomalies and informs the end-user if these critical impacts occurred during handling procedures. The proposed auto-encoder analytical method is compared with the impacts detection methodology (IDM), and the result indicates that the proposed solution is well capable of detecting critical events by analyzing the curves of reshaped signals, detecting the same impacts as the IDM, while improving the speed of the short-term detection periods. We managed to detect–predict between 9 and 18 impacts, depending on the axis of container sway. An experimental study suggests that if programmed correctly, the auto-encoder (AE) can be used to detect deviations in time-series events in different container handling scenarios.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3