AI-Driven Virtual Sensors for Real-Time Dynamic Analysis of Mechanisms: A Feasibility Study

Author:

Fabiocchi Davide1ORCID,Giulietti Nicola1ORCID,Carnevale Marco1ORCID,Giberti Hermes1ORCID

Affiliation:

1. Dipartimento di Ingegneria Industriale e dell’Informazione, Università di Pavia, Via Adolfo Ferrata 5, 27100 Pavia, Italy

Abstract

The measurement of the ground forces on a real structure or mechanism in operation can be time-consuming and expensive, particularly when production cannot be halted to install sensors. In cases in which disassembling the parts of the system to accommodate sensor installation is neither feasible nor desirable, observing the structure or mechanism in operation and quickly deducing its force trends would facilitate monitoring activities in industrial processes. This opportunity is gradually becoming a reality thanks to the coupling of artificial intelligence (AI) with design techniques such as the finite element and multi-body methods. Properly trained inferential models could make it possible to study the dynamic behavior of real systems and mechanisms in operation simply by observing them in real time through a camera, and they could become valuable tools for investigation during the operation of machinery and devices without the use of additional sensors, which are difficult to use and install. In this paper, the idea presented is developed and applied to a simple mechanism for which the reaction forces during operating conditions are to be determined. This paper explores the implementation of an innovative vision-based virtual sensor that, through data-driven training, is able to emulate traditional sensing solutions for the estimation of reaction forces. The virtual sensor and relative inferential model is validated in a scenario as close to the real world as possible, taking into account interfering inputs that add to the measurement uncertainty, as in a real-world measurement scenario. The results indicate that the proposed model has great robustness and accuracy, as evidenced by the low RMSE values in predicting the reaction forces. This demonstrates the model’s effectiveness in reproducing real-world scenarios, highlighting its potential in the real-time estimation of ground reaction forces in industrial settings. The success of this vision-based virtual sensor model opens new avenues for more robust, accurate, and cost-effective solutions for force estimation, addressing the challenges of uncertainty and the limitations of physical sensor deployment.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3