Analytical Modeling and Experimental Validation of the Coefficient of Friction in AlSi10Mg-SiC Composites

Author:

Iftikhar Saba1ORCID,Kolev Mihail2ORCID,Kolev Dimitar1

Affiliation:

1. Department of Mathematics, Abdus Salam School of Mathematical Sciences (ASSMS), 68-B, New Muslim Town, Lahore 54600, Pakistan

2. Institute of Metal Science, Equipment and Technologies with Center for Hydro- and Aerodynamics “Acad. A. Balevski”, Bulgarian Academy of Sciences, 1574 Sofia, Bulgaria

Abstract

Recognizing the lightweight nature and superior tribological properties of Al-based metal matrix composites, this study introduces a novel analytical model based on polynomial approximations, offering new insights into the mechanisms of dry friction in AlSi10Mg-SiC composite materials. Key findings highlight a significant reduction in the coefficient of friction (COF) and oscillation amplitudes in SiC-reinforced composites, indicating superior tribological performance compared to their unreinforced counterparts. This behavior is attributed to the effective distribution of SiC particles within the aluminum matrix, which mitigates the stick–slip motion commonly observed under dry sliding conditions. Importantly, the model using polynomial approximations is noted for its simplicity and ease of implementation in practice. The study’s conclusions not only underscore the benefits of SiC reinforcement in enhancing wear resistance but also contribute to the broader field of materials science by providing a robust framework for the predictive modeling of COF in various composite systems.

Funder

Bulgarian National Science Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3