Development and Research of Crosshead-Free Piston Hybrid Power Machine

Author:

Shcherba ViktorORCID,Shalay Viktor,Nosov Evgeniy,Pavlyuchenko Evgeniy,Tegzhanov Ablai-Khan

Abstract

This article considers the development and research of a new design of crosshead-free piston hybrid power machine. After verification of a system of simplifying assumptions based on the fundamental laws of energy, mass, and motion conservation, as well as using the equation of state, mathematical models of the work processes of the compressor section, pump section, and liquid flow in a groove seal have been developed. In accordance with the patent for the invention, a prototype of a crosshead-free piston hybrid power machine (PHPM) was developed; it was equipped with the necessary measuring equipment and a stand for studying the prototype. Using the developed mathematical model, the physical picture of the ongoing work processes in the compressor and pump sections is considered, taking into account their interaction through a groove seal. Using the developed plan, a set of experimental studies was carried out with the main operational parameters of the crosshead-free PHPM: operating processes, temperature of the cylinder–piston group and integral parameters (supply coefficient of the compressor section, volumetric efficiency of the pump section, etc.). As a result of numerical and experimental studies, it was determined that this PHPM design has better cooling of the compressor section (decrease in temperature of the valve plate is from 10 to 15 K; decrease in temperature of intake air is from 6 to 8 K, as well as there is increase in compressor and pump section efficiency up to 5%).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3