High Temperature Mechanical Properties and Microstructure Evolution of Ti-6Al-4V Alloy Linear Friction Welding Joints

Author:

Zhang Chen,Li Dongsheng,Li Xiaoqiang,Li Yong,Xia Qin

Abstract

The combination of linear friction welding (LFW) and hot forming processes is limited due to a lack of research on the high-temperature flow behavior and microstructure evolution of welded joints. In this paper, an electric-assisted high-temperature uniaxial tensile test platform based on digital image correlation (DIC) is built, and uniaxial tensile tests of Ti-6Al-4V alloy with LFW joints are performed at different temperatures (923–1023 K) and different strain rates (0.001 s−1–0.01 s−1). Then the microstructure of the LFW joints under different hot deformation conditions have been analyzed by scanning electron microscope (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The results indicate that the high-temperature flow behavior of LFW joints shows an obvious correlation between temperature and strain rate: the yield stress decreases from 203 MPa at 923 K to 105 MPa at 1023 K, and increases from 85 MPa to 130 MPa when the strain rate increases from 0.001 s−1 to 0.01 s−1 at 973 K. The hot deformation mechanisms with deformation conditions have been characterized, which changes from the mechanism of dislocation creep to the mechanism of self-diffusion as the deformation temperature increases from 923 to 1023 K. Especially, the fraction of high angle boundaries (HABs) rapidly rise from 49.2% to 64.1% with the increasing temperatures, the discontinuous dynamic recrystallization (DDRX) become the primary mechanism of nucleation during high-temperature deformation of LFW joints.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3