Effect of Hardening Temperature on Maraging Steel Samples Prepared by Direct Metal Laser Sintering Process

Author:

Vandzura Radoslav1ORCID,Simkulet Vladimir1,Gelatko Matus1ORCID,Hatala Michal1ORCID,Mitalova Zuzana1

Affiliation:

1. Faculty of Manufacturing Technologies, Technical University of Košice, 080 01 Prešov, Slovakia

Abstract

This paper deals with the application of the direct metal laser sintering (DMLS) process, which already has a dominant position in the area of additive manufacturing (AM). This DMLS technology is used in many branches of industry and medicine, especially in piece production, small series, and prototypes. The portfolio of used metal powder materials includes aluminum alloys, austenitic steels, maraging steels, special alloys of nickel and titanium. The properties of these products are very often improved by further heat treatment after printing, such as a hardening process, by which microstructure and hardness can be increased. Heat treatment processes of metal AM components are already described, but experiments focused on optimization of these processes are still missing. In the article, the maraging steel samples printed by the DMLS method are subjected to testing after hardening processes, which differ by reducing the maintaining time at a defined temperature, recommended by the manufacturer. The result of the evaluation will be the reaching of similar results, which are set by the powder manufacturer, however, with shorter time of samples treatment. Therefore, the elevated temperature is selected, with the purpose of monitoring the shortest possible time of a temperature impact. The experimental temperature was set 590 °C with different durations at this temperature, for 1, 2, 3, 4, 5 and 6 h. The cooling process runs controlled in the furnace or in the still air. The maintaining time proved to be the most ideal already at 1 h exposure and cooled in the still air, where a higher hardness value of around 50 HRC was reached. During the resulting microstructure evaluations, fine carbids and martensitic lamellae were observed. More uniform and finer lamellar microstructure occurred at 5 and 6 h temperature intervals.

Funder

grant projects

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference40 articles.

1. Additive manufacturing process selection based on parts selection criteria;Miguel;Int. J. Adv. Manuf. Technol.,2015

2. Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting;Yasa;Procedia Eng.,2011

3. Palermo, E. (2019, August 08). Laserové spekanie. Available online: https://www.livescience.com/38862-selective-laser-sintering.html.

4. Evaluation of the Impact Energy of the Samples Produced by the Additive Manufacturing Technology;Baron;Metalurgija,2016

5. Monková, K. (2017). Some Aspects of DMLS Technology, RISE Association.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3