A Few-Shot Learning-Based Crashworthiness Analysis and Optimization for Multi-Cell Structure of High-Speed Train

Author:

Dong Shaodi,Jing Tengfei,Zhang Jianjun

Abstract

Due to the requirement of significant manpower and material resources for the crashworthiness tests, various modelling approaches are utilized to reduce these costs. Despite being informative, finite element models still have the disadvantage of being time-consuming. A data-driven model has recently demonstrated potential in terms of computational efficiency, but it is also accompanied by challenges in collecting an amount of data. Few-shot learning is a perspective approach in addressing the problem of insufficient data in engineering. In this paper, using a novel hybrid data augmentation method, we investigate a deep-learning-based few-shot learning approach to evaluate and optimize the crashworthiness of multi-cell structures. Innovatively, we employ wide and deep neural networks to develop a surrogate model for multi-objective optimization. In comparison with the original results, the optimized result of the multi-cell structure demonstrates that the mean crushing force (Fm) and specific energy absorption (SEA) are increased by 17.1% and 30.1%, respectively, the mass decreases by 4.0%, and the optimized structure offers a significant improvement in design space. Overall, this proposed method exhibits great potential in relation to the crashworthiness analysis and optimization for multi-cell structures of the high-speed train.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference39 articles.

1. Review and compilation of experimental results on thin-walled structures

2. Finite Element Analysis of Thin-Walled Structures;Bull,1988

3. Models and finite elements for thin-walled structures;Bischoff,2004

4. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption

5. Artificial Neural Network Applied to Prediction of Buckling Behaviour of the Thin Walled Box. Advanced Engineering Forum;Susac,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3