Investigation of Single Grain Grinding of Titanium Alloy Using Diamond Abrasive Grain with Positive Rake Angle

Author:

Yin Jiu12,Sun Rushui3,Ming Chuanbo3,Chen Chang12,Zeng Shuai1

Affiliation:

1. School of Mechanical and Electrical Engineering, Hunan City University, Yiyang 413000, China

2. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China

3. Shandong Taikai Power Switchgear Co., Ltd., Taian 271000, China

Abstract

Traditional grinding, which is predominantly performed with a negative rake angle (NRA), can be transformed into grinding with a positive rake angle (PRA) by employing femtosecond pulsed laser technology to modify the apex angle of the grains to be less than 90°. This innovative approach aims to reduce grinding forces and grinding temperatures while improving the surface quality of typical hard-to-machine materials. To assess the performance of PRA single grain grinding and to investigate the underlying mechanisms, the finite element simulation software ABAQUS 6.14 was employed to model the grinding of Ti6Al4V titanium alloy with a single diamond abrasive grain. The dependence of grinding force and temperature in single grain grinding with a PRA or an NRA under different grinding parameters was studied and compared. PRA and NRA single diamond grain grinding experiments on Ti6Al4V alloy were carried out, with grinding forces measured using a dynamometer and compared with the simulation results. The grinding surface morphology and surface roughness were observed and measured, and a comparison was made between PRA and NRA grinding. The results indicated that in single diamond grain grinding, transforming to a PRA significantly enhances grinding performance, as evidenced by reduced grinding forces, lower temperatures, improved surface morphology, and decreased surface roughness. These findings suggest that PRA single diamond grain grinding offers substantial benefits for the precision machining of hard-to-machine materials, marking a step forward in optimizing surface finishes.

Funder

Scientific Research Foundation of the Hunan Provincial Education Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3