A Method to Obtain Frequency Response Functions of Operating Mechanical Systems Based on Experimental Modal Analysis and Operational Modal Analysis

Author:

Shen Cunrui1,Lu Chihua1ORCID

Affiliation:

1. Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China

Abstract

The characteristics of a mechanical structure under operating conditions may differ from those in a static state. It is often more desirable to obtain the frequency response function (FRF) of the operating structure in engineering applications. While operational modal analysis (OMA) can estimate modal parameters during operation, it fails to provide mass-normalized mode shapes for FRF synthesis. This paper presents a new method using experimental modal analysis (EMA) to compensate for the absent information in OMA. It categorizes operational mode shapes into changed ones and those that remain the same compared to the static state, applying different scaling techniques accordingly. This method adapts to changes in dynamic characteristics without altering the operating conditions. Stability is emphasized throughout the process. Two examples are provided to verify the method, considering noise and incompleteness in measurement, and disturbances in dynamic properties. The proposed method is proven to be feasible and reliable to capture the changes in operational FRFs.

Funder

School of Automotive Engineering, Wuhan University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3