Optimization of the Femtosecond Laser Machining Process for Single Crystal Diamond Using Response Surface Methodology

Author:

Yin Jiu12,Ming Chuanbo3,Zhang Guangfu1,Chen Chang12ORCID,Zeng Qi1,Li Yuan1

Affiliation:

1. School of Mechanical and Electrical Engineering, Hunan City University, Yiyang 413000, China

2. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China

3. Shandong Taikai Power Switchgear Co., Ltd., Taian 271000, China

Abstract

Femtosecond laser machining offers high precision and minimal thermal impact, making it a promising technique for processing hard and brittle materials like single-crystal diamonds (SCDs). In this study, the femtosecond laser machining process for SCD material was systematically optimized to improve both machining efficiency and quality. Initial single-factor experiments were conducted to explore the effects of key process parameters—laser power, scanning speed, and number of scans—on machining performance. Subsequently, response surface methodology (RSM)-based experiments designed using the Box–Behnken method were employed to comprehensively refine the process. A regression model was developed to analyze the data, and the interaction effects of the parameters were thoroughly evaluated. The validated model identified an optimal set of parameters, resulting in a significant improvement in machining performance. This research provides a comprehensive framework for optimizing femtosecond laser machining processes, offering valuable insights critical for the production of advanced lightweight components in industries such as aerospace, optical instruments, and high-performance electronics.

Funder

Scientific Research Foundation of Hunan Provincial Education Department

Natural Science Foundation of Hunan Province

Innovation and Entrepreneurship Training Program for Hunan College Students

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3