Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance Purposes

Author:

Rodriguez Pablo Cosa1ORCID,Marti-Puig Pere2ORCID,Caiafa Cesar F.3ORCID,Serra-Serra Moisès2ORCID,Cusidó Jordi24ORCID,Solé-Casals Jordi2ORCID

Affiliation:

1. Faculty of Computer Science, Multimedia and Telecommunications, Open University of Catalonia, 08080 Barcelona, Spain

2. Data and Signal Processing Group, University of Vic-Central, 08500 Vic, Spain

3. Instituto Argentino de Radioastronomía—CCT La Plata, CONICET/CIC-PBA/UNLP, Villa Elisa 1894, Argentina

4. Enginyeria de Projectes i de la Construcció EPC, Universitat Politécnica de Catalunya, 08028 Barcelona, Spain

Abstract

Product maintenance costs throughout the product’s lifetime can account for between 30–60% of total operating costs, making it necessary to implement maintenance strategies. This problem not only affects the economy but is also related to the impact on the environment, since breakdowns are also responsible for the delivery of greenhouse gases. Industrial maintenance is a set of measures of a technical-organizational nature whose purpose is to sustain the functionality of the equipment and guarantee an optimal state of the machines over time, with the aim of saving costs, extending the useful life of the machines, saving energy, maximising production and availability, ensuring the quality of the product obtained, providing job security for technicians, preserving the environment, and reducing emissions as much as possible. Machine learning techniques can be used to detect or predict faults in wind turbines. However, labelled data suffers from many problems in this application because alarms are usually not clearly associated with a specific fault, some labels are wrongly associated with a problem, and the imbalance between labels is evident. To avoid using labelled data, we investigate here the use of the clustering technique, more specifically K-means, and boxplot representations of the variables for a set of six different tests. Experimental results show that in some cases, the clustering and boxplot techniques allow us to determine outliers or identify erroneous behaviours of the wind turbines. These cases can then be investigated in detail by a specialist so that more efficient predictive maintenance can be carried out.

Funder

Ministerio de Ciencia e Innovación of the Spanish Government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference23 articles.

1. Contributors to the Wikimedia Projects (2022, December 17). "Vida útil—Wikipedia, la Enciclopedia Libre." Wikipedia, la Enciclopedia Libre. Available online: https://es.wikipedia.org/wiki/Vida_útil.

2. Muñoz Abella, M. (2003). Mantenimiento Industria, Universidad Carlos III de Madrid, Área de Ingeniería Mecánica.

3. (2010). Maintenance Terminology (Standard No. EN 13306:2010).

4. Stark, J. (2022). Product Lifecycle Management, Springer.

5. Sillivant, D. (2015, January 26–29). Reliability centered maintenance cost modeling: Lost opportunity cost. Proceedings of the 2015 Annual Reliability and Maintainability Symposium (RAMS), Palm Harbor, FL, USA.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3